

Network Appliance Inc.

1

TECHNICAL REPORT

Using the Linux® NFS Client with
Network Appliance™ Filers
Getting the Best from Linux and
Network Appliance Technologies
Chuck Lever, Network Appliance | August 2004 | TR 3183

Abstract
This report helps you get the best from your Linux NFS clients when used in
an environment that includes Network Appliance filers. You will learn what
level of performance to expect from your Linux systems. You will learn how to
tune your Linux clients and diagnose performance and reliability problems.
Finally, you will learn where to look for more information when faced with
problems that are difficult to diagnose. Filer tuning information specific to
your application may be available in other Network Appliance technical reports.

This document is appropriate for customers, systems engineers, technical
marketing engineers, and customer support personnel who install and
configure Linux systems that use NFS to access Network Appliance filers
and network caches.

TECHNICAL REPORT

N
etw

ork A
ppliance, a pioneer and

industry leader in data storage
technology, helps organizations
understand and m

eet com
plex technical

challenges w
ith advanced storage

solutions and global data m
anagem

ent

Network Appliance Inc.

2

TECHNICAL REPORT

Table of Contents

 Abstract 1

1) Typographic Conventions 3

2) Introduction 4

3) Which Linux NFS Client Is Right for Me? 5

3.1) Identifying Kernel Releases 5

3.2) Today’s Linux distributions 5

3.3) The NFS Client in the 2.4 Kernel 6

3.4) The NFS Client in the 2.6 Kernel 7

4) Foolproof Mount Options for Linux NFS Clients 8

4.1) Choosing a Network Transport Protocol 9

4.2) Capping the Size of Read and Write Operations 10

4.3) Special Mount Options 11

4.4) Tuning NFS client cache behavior 12

4.5) Unmounting NFS File Systems 14

4.6) Mount Option Examples 15

5) Performance 17

5.1) Linux NFS client performance 17

5.2) Linux NFS Client Architecture 18

5.3) Diagnosing Performance Problems with the Linux NFS Client 20

5.4) Error Messages in the Kernel Log 22

5.5) Oops 22

5.6) Getting Help 23

6) Other Sundries 25

6.1) Telling Time 25

6.2) Security 25

6.3) Network Lock Manager 26

6.4) Using the Linux Automounter 27

Network Appliance Inc.

3

TECHNICAL REPORT

6.5) Net booting your Linux NFS clients 28

7) Executive Summary 30

8) Appendix 31

8.1) Related Material 31

8.2) Special network settings 32

8.3) Controlling File Read-Ahead in Linux 33

8.4) How to Enable Trace Messages 34

8.5) How to Enable Uncached I/O on RHEL AS 2.1 34

1) Typographic Conventions
Linux and filer commands and file names appear in Courier New.

Summary information appears in red italicized type at the end of each section, and an executive
summary appears at the end of the document.

Network Appliance Inc.

4

TECHNICAL REPORT

2) Introduction
More and more Network Appliance customers recognize the value of Linux in their enterprises.
Historically, the Linux NFS client has trailed the rest of Linux in providing the level of stability,
performance, and scalability that is appropriate for enterprise workloads. In recent times, however, the
NFS client has improved considerably and continues to improve in performance and ability to work
under degraded network conditions.

This document addresses several areas that concern those who are planning a new Linux deployment
or are administering an existing environment that contains Linux NFS clients accessing Network
Appliance filers. These areas include:

• What level of performance and stability to expect from Linux NFS clients

• How to tune Linux NFS clients to perform well with filers

• How to diagnose client and network problems that involve Linux NFS clients

• Which network interfaces and drivers work best

• How to configure other services required to provide advanced NFS features

• Where to find more tuning and diagnostic information on NOW™ (NetApp on the Web) and the
Internet

Except for clients running Oracle databases, Network Appliance does not recommend specific Linux
kernel releases or distributions. First, there are too many distributions and releases to qualify them all.
There are more than a half-dozen distributions and thousands of different kernel releases. Add to that
the many different versions of user-level helper applications (such as the mount command). Because
all of these are open source, you can modify or replace any part of your client.

Second, many hardware and application vendors specify a small set of releases or a single release and
distribution that are certified and supported. It would be confusing for us to recommend one particular
kernel or distribution when your hardware vendor recommends another, and your application vendor
specifies yet a third.

Finally, some applications are more sensitive to NFS client behavior than others. Recommending a
particular Linux NFS client depends on the applications you want to run and what your performance
and reliability requirements are.

Therefore, instead of recommending one or two releases that work well, we provide some guidelines to
help you decide among the many Linux distributions and releases, and we provide advice on how to
make your Linux NFS clients work their best.

Network Appliance Inc.

5

TECHNICAL REPORT

3) Which Linux NFS Client Is Right for Me?
Before we begin our focus on technical issues, we cover some basic technical support challenges
specific to Linux. The Linux NFS client is part of the Linux kernel. Because Linux is open source, you
might think that it is easy to provide Linux kernel patches to upgrade the NFS client. In fact, providing a
patch that fixes a problem or provides a new feature can be complicated by several facts of life in the
Linux and open source worlds.

There are many different parts to Linux, but the two we are concerned about are the distribution and
the kernel. The distribution is the set of base operating system files that are included when customers
install a Red Hat or SUSE Linux distribution on their hardware. This includes commands, applications,
and configuration files. A kernel comes with a distribution, but customers can replace it, usually without
affecting other files provided in the distribution.

3.1) Identifying Kernel Releases
The version number of a Linux distribution and the release number of a Linux kernel use different
naming schemes. While planning a distribution, each distributor chooses a particular kernel release (for
example, 2.6.5) and adds some modifications of its own before placing the kernel into a distribution. To
reduce the amount of variation they encounter in their support contracts, distributors support only a
small set of kernels, most of which are carefully designed for a specific distribution.

Because the NFS client is part of the kernel, updates to the NFS client require that you replace the
kernel. Technically, it is easy to replace a kernel after a distribution is installed, but Linux customers
risk losing distributor support for their installation if they install a kernel that was not built by the
distributor. For this reason, Network Appliance does not recommend specific patches or kernel
versions,. Often support contracts constrain customers so they cannot install a patch until their chosen
distributor provides a supported kernel that includes the recommended patch.

The current kernel is released in two branches, known as the “stable” branch and the “development”
branch. The stable branch is ostensibly the branch that is hardened, reliable, and has unchanging
program interfaces, while the development branch can be (and often is) unstable and sometimes is
even unbootable. Stable branches have even minor release numbers, such as 2.4, while development
branches have odd minor release numbers, such as 2.5.

The previous stable branch is 2.4, the latest stable branch is 2.6, and the latest development branch
has not been opened yet. Linux kernels are not published on a time-based schedule. Kernel revisions
are released when the branch maintainer decides they are ready. New features and API changes are
allowed in development kernels, but there is no schedule for when such a kernel will become a stable
release. Development branches have historically taken two years to 30 months to become stable
branches. It is for this reason that there is often significant pressure to add new features to stable
releases instead of working them into development releases.

3.2) Today’s Linux distributions
As mentioned above, distributions are numbered differently than kernels. Each distributor chooses its
own numbering scheme. When describing your Linux environment to anyone, be sure to list both the
distribution release number, and the kernel release number. Distributors usually append another
number on the end of their kernel versions to indicate which revision of that kernel is in use. For
instance, Red Hat shipped kernel 2.4.18-3 with its 7.3 distribution, but made several other errata
kernels available over time to fix problems in its kernel: 2.4.18-10, 2.4.18-17, 2.4.18-27, and so on.

Network Appliance Inc.

6

TECHNICAL REPORT

An important trend in commercial Linux distributions is the existence of enterprise Linux distributions.
Enterprise distributions are quality-assured releases that come with special support contracts. Not all
customers need this level of support, however. Red Hat recently changed its product line, dropping the
professional series of distributions in favor of an openly maintained distribution called Fedora. Fedora is
intended for developers and customers who can tolerate some instability on their Linux systems. SUSE
continues to sell an enterprise distribution as well as a less expensive desktop product line.
Distributions such as Mandrake and Debian are ideal for customers looking for a low-cost general
purpose Linux distribution.

Network Appliance recommends that its Linux customers always use the latest actively maintained
distributions available. Customers running older unsupported distributions no longer get the benefits of
security fixes and quick bug fixes on their Linux clients. Most Linux distributors will not address bugs in
older distributions at all. Especially if your clients and filers are not protected by a firewall, it is important
for you to stay current with the latest errata patches available for your distribution.

To find out which kernel your clients run, you can use this command:

% uname –r
2.4.21-15.0.4.ELsmp
%

Kernels built from community source code usually have only three or four dot-separated numbers, like
2.6.8.1. Distributors generally add a hyphen and more version numbers (in this case, -15.0.4), which
indicate that additional patches over the community source base have been applied. The keyword on
the end, such as “hugemem” or “smp,” show hardware capabilities this kernel was built for.

3.3) The NFS Client in the 2.4 Kernel
The NFS client in this kernel has many improvements over the older 2.2 client, most of which address
performance and stability problems. The NFS client in kernels later than 2.4.16 has significant changes
to help improve performance and stability.

Customers that use 2.4 kernels on hardware with more than 896MB should know that a special kernel
compile option, known as CONFIG_HIGHMEM, is required for the system to access and use physical
memory above 896MB. The Linux NFS client has a known problem in these configurations where an
application or the whole client system can hang at random. This issue has been addressed in the
2.4.20 kernel, but still haunts kernels contained in distributions from Red Hat and SUSE that are based
on earlier kernels.

Early releases of Red Hat 7.3 contained a kernel that demonstrated very poor NFS client performance
when mounting with UDP. Recent errata kernels that fix some of the performance problems are
available from Red Hat. Network Appliance recently published an article describing this problem in
detail. See document ntapcs6648 on NOW (the URL is in the appendix).

Earlier kernels in the 2.4 series may have some problems when using NFS over TCP. The latest
distributions (SUSE SLES 8 SP3, Fedora Core 1, and RHEL 3.0) use kernels that have a robust NFS
over TCP implementation. Kernels older than 2.4.20 can suffer from problems with NFS over TCP that
result from lossy networks and overloaded NFS servers. The problem, documented in BURT 96021,
can cause mount points to become unusable until the client is rebooted. No matter which 2.4 kernel
your distribution uses, you should always start with NFS over TCP first, as TCP has a number of
important benefits over UDP.

Network Appliance Inc.

7

TECHNICAL REPORT

3.4) The NFS Client in the 2.6 Kernel
During 2004, we expect distributions based on the 2.6 kernel to appear and become stable enough to
be employed in production environments. SUSE SLES 9 is the first enterprise Linux distribution to use
2.6, and Fedora Core 2 is also a 2.6-based distribution that is available now.

A new feature in the 2.6 kernel is support for the latest version of the NFS protocol, version 4.
Developers are still in the process of retrofitting the Linux NFS client and server implementations for
the new protocol version. Certain features are available today in 2.6 kernels, but others, such as read
and write delegation and replication and migration support, are still under development and are not yet
available. Support for NFS version 4 is available now in Fedora Core 2.

The 2.6 kernel also brings support for advanced authentication mechanisms such as Kerberos 5.
Support for Kerberos will be available for NFS versions 2 and 3 as well as for NFS version 4. Kerberos
authentication increases security by reducing the likelihood that user identities in NFS requests can be
forged. It also provides optional facilities to ensure the integrity or privacy of communication between
an NFS client and server.

The NFS client in the 2.6 kernel has demonstrated superior performance and stability over older Linux
NFS clients, but as usual customers should be cautious about moving their production workloads onto
this very new release of the Linux kernel.

In summary: You should use the latest distribution and kernel available from your distributor when
installing a new deployment, and attempt to keep your existing Linux clients running the latest updates
from your distributor. Always check with your hardware and application vendors to be certain they
support the kernel you choose to run. Contact us if you have any special requirements.

Network Appliance Inc.

8

TECHNICAL REPORT

4) Foolproof Mount Options for Linux NFS Clients
If you have never set up mount options on an NFS client before, review the “nfs” man page on Linux to
see how these terms are defined. You can type man nfs at a shell prompt to display the page. In
addition, O’Reilly’s “Managing NFS & NIS” covers many of these topics (see the appendix for URL and
ISBN information).

You can look in /etc/fstab on the client to see what options the client attempts to set when
mounting a particular file system. Check your automounter configuration to see what defaults it uses
when mounting. Running the mount command at a shell prompt tells you what options are actually in
effect. Clients negotiate some options, for example, the rsize option, with servers. Look in the client’s
/proc/mounts file to determine exactly what mount options are in effect for an existing mount.

The default NFS protocol version (2 or 3) used when mounting an NFS server can change depending
on what protocols the server exports, which version of the Linux kernel is running on the client, and
what version of the mount utilities package is in use. Version 2 of NFS is the default. To ensure that
your client uses the NFSv3 protocol, you should specify “vers=3” when mounting a filer. Be sure that
the NFSv3 protocol is enabled on your filer before trying to mount using “vers=3” by using the “options
nfs” command on your filer’s console.

The “hard” mount option is the default on Linux and is mandatory if you want data integrity. Using the
“soft” option reduces the likelihood of client instability during server and network outages, but it
exposes your applications to silent data corruption, even if you mount file systems read-only. If a soft
timeout interrupts a read operation, the client’s cached copy of the file is probably corrupt. To purge a
corrupted file requires that some application locks and unlocks the file, that the whole file system is
unmounted and remounted, or that another client modifies the file’s size or mtime. If a soft timeout
interrupts a write operation, there is no guarantee that the file on the server is correct, nor is there any
guarantee that the client’s cached version of the file matches what is on the server.

A client can indicate that a soft timeout has occurred in various ways. Usually system calls return EIO
when such a timeout occurs. You may also see messages in the kernel log suggesting that the client
had trouble maintaining contact with the server and has given up. If you see a message that says the
client is still trying, then the “hard” mount option is in effect.

As an alternative to soft mounting, consider using the “intr” option, which allows users and applications
to interrupt the NFS client when it gets stuck waiting for server or network recovery. On Linux,
interrupting applications or mount commands does not always work, so sometimes rebooting your
client is necessary to recover a mount point that has become stuck because the server is not available.

When running applications such as databases that depend on end-to-end data integrity, you should use
“hard,nointr.” Oracle has verified that using intr instead of nointr can expose your database to the risk
of corruption when a database instance is signaled (for example, during a “shutdown abort” sequence).

The “soft” option is useful only in a small number of cases. If you expect significant server or network
instability, try using the soft option with TCP to help reduce the impact of temporary problems. When
using the soft option, especially with UDP, set a long retransmission timeout and a relatively large
number of retries. This reduces the likelihood that very brief outages or a few dropped packets will
cause an application failure or data corruption.

Network Appliance Inc.

9

TECHNICAL REPORT

4.1) Choosing a Network Transport Protocol
Although UDP is a simple transport protocol that has less CPU and network overhead than TCP, NFS
over UDP has deficiencies that are exposed on congested networks, such as routed multispeed
networks, DSL links, and slow WANs, and should never be used in those environments. Unless you
need the very last bit of performance from your network, TCP is a safe bet, especially on versions of
Linux more recent than 2.4.19. Future versions of the NFS protocol may not support UDP at all, so it is
worth planning a transition to TCP now if you still use primarily NFS over UDP.

NFS over TCP can handle multispeed networks (networks where the links connecting the server and
the client use different speeds), higher levels of packet loss and congestion, fair bandwidth sharing,
and widely varying network and server latency, but can cause long delays during server recovery.
(Note that older releases of Data ONTAP™ do not enable NFS over TCP by default. From Data
ONTAP release 6.2 onward, TCP connections are enabled automatically on new filer installations).
Although TCP has slightly greater network and CPU overhead on both the client and server, you will
find that NFS performance on TCP remains stable across a variety of network conditions and
workloads.

If you find UDP suits your needs better and you run kernels older than 2.4.22, be sure to enlarge your
client’s default socket buffer size by following the instructions listed in the appendix of this guide. Bugs
in the IP fragmentation logic in these kernels can cause a client to flood the network with unusable
packets, preventing other clients from accessing the filer. The Linux NFS client is especially sensitive to
IP fragmentation problems that can result from congested networks or undersized switch port buffers. If
you think IP fragmentation is an issue for your clients using NFS over UDP, the “netstat –s” command
on the client and on the filer will show continuous increases in the number of IP fragmentation errors.
Be certain to apply this change to all Linux NFS clients on your network in order for the change to be
completely effective. Note that RHEL 3.0’s kernels, even though based on 2.4.21-pre1, already set
transport socket buffer sizes correctly.

In Linux kernels older than 2.4.21, a remote TCP disconnect (for example during a cluster failover)
occasionally may cause a deadlock on the client that makes a whole mount point unusable until the
client is rebooted. There is no workaround other than upgrading to a version of the Linux kernel where
this issue is addressed.

For databases, we recommend NFS over TCP. There are rare cases where NFS over UDP on noisy or
very busy networks can result in silent data corruption. In addition, Oracle9i™ RAC is certified on NFS
over TCP running on Red Hat Advanced Server 2.1.

You can control RPC retransmission timeouts with the “timeo” option. Retransmission is the mechanism
by which clients ensure a server receives and processes an RPC request. If the client does not receive
a reply for an RPC within a certain interval for any reason, it retransmits the request until it receives a
reply from the server. After each retransmission, the client doubles the retransmit timeout up to 60
seconds to keep network load to a minimum.

By default, the client retransmits an unanswered UDP RPC request after 0.7 seconds. In general, it is
not necessary to change the retransmission timeout for UDP, but in some cases, a shorter
retransmission timeout for NFS over UDP may shorten latencies due to packet losses. As of kernel
2.4.20, an estimation algorithm that adjusts the timeout for optimal performance governs the UDP
retransmission timeout for some types of RPC requests.

Network Appliance Inc.

10

TECHNICAL REPORT

The Linux NFS client quietly retransmits RPC requests several times before reporting in the kernel log
that it has lost contact with an NFS server. You can control how many times the client retransmits the
same request before reporting the loss using the “retrans” mount option. Remember that whenever the
hard mount option is in effect, an NFS client never gives up retransmitting an RPC until it gets a reply.
Be careful not to use the similar-sounding “retry” mount option, which controls how long the mount
command retries a backgrounded mount request before it gives up.

Retransmission for NFS over TCP works somewhat differently. The TCP network protocol contains its
own timeout and retransmission mechanism that ensures packets arrive at the receiving end reliably
and in order. The RPC client depends on this mechanism for recovering from the loss of RPC requests
and thus uses a much longer timeout setting for NFS over TCP by default. Due to a bug in the mount
command, the default retransmission timeout value on Linux for NFS over TCP is six seconds, unlike
other NFS client implementations. To obtain standard behavior, you may wish to specify
“timeo=600,retrans=2” explicitly when mounting via TCP. Unlike with NFS over UDP, using a short
retransmission timeout with NFS over TCP does not have performance benefits and may increase the
risk of data corruption.

In summary, “timeo=600,retrans=2” is appropriate for TCP mounts. When using NFS over UDP,
“timeo=4,retrans=9” is a better choice. Using “timeo=600” with NFS over UDP will result in very poor
performance in the event of network or server problems. Using a very short timeout with TCP could
cause network congestion or, in rare cases, data corruption.

4.2) Capping the Size of Read and Write Operations
In Linux, the “rsize” and “wsize” mount options have additional semantics compared with the same
options as implemented in other operating systems. Normally these options determine how large a
network read or write operation can be before the client breaks it into smaller operations. Low rsize and
wsize values are appropriate when adverse network conditions prevent NFS from working with higher
values or when NFS must share a low-bandwidth link with interactive data streams.

By default, NFS client implementations choose the largest rsize and wsize values a server supports.
However, if you do not explicitly set rsize or wsize when you mount an NFS file system on a Red Hat
NFS client, the default value for both is a modest 4,096 bytes. Red Hat chose this default because it
allows the Linux NFS client to work without adjustment in most environments. Usually on clean high-
performance networks, or with NFS over TCP, you can improve NFS performance by explicitly
increasing these values.

Normally, the Linux client caches application write requests, issuing NFS WRITE operations when it
has at least “wsize” bytes to write. The NFS client often returns control to a writing application before it
has issued any NFS WRITE operations. It also issues NFS READ operations in parallel before waiting
for the server to reply to any of them. If the “rsize” option is set below the system’s page size (4KB on
x86 hardware), the NFS client in 2.4 kernels issues individual read operations one at a time and waits
for each operation to complete before issuing the next read operation. If the “wsize” option is set below
the system’s page size, the NFS client issues synchronous writes without regard to the use of the
“sync” or “async” mount options. As with reads, synchronous writes cause applications to wait until the
NFS server completes each individual write operation before issuing the next operation or before letting
an application continue with other processing. When performing synchronous writes, the client waits
until the server has written its data to stable storage before allowing an application to continue.

Network Appliance Inc.

11

TECHNICAL REPORT

Some hardware architectures allow a choice of different page sizes. Intel® Itanium™ systems, for
instance, support pages up to 64KB. On a system with 64KB pages, the rsize and wsize limitations
described above still apply; thus all NFS I/O is synchronous on these systems, significantly slowing
read and write throughput. When running on hardware that supports different page sizes, choose a
combination of page size and r/wsize that allows the NFS client to do asynchronous I/O if possible.
Usually distributors choose a single large page size, such as 16KB, when they build kernels for
hardware architectures that support multiple page sizes. This limitation has been removed in 2.6
kernels so that all read and write traffic is asynchronous whenever possible, independent of the “rsize”
and “wsize” settings.

The network transport protocol (TCP or UDP) interacts in complicated ways with rsize and wsize. When
you encounter poor performance because of network problems, using NFS over TCP is a better way to
achieve good performance than using small read or write sizes over UDP. The NFS client and server
fragment large UDP datagrams, such as single read or write operations more than a kilobyte in size,
into individual IP packets. RPC over UDP retransmits a whole RPC request if any part of it is lost on the
network, whereas RPC over TCP efficiently recovers a few lost packets and reassembles the complete
requests at the receiving end. Thus with NFS over TCP, 32KB read and write size usually provides
good performance by allowing a single RPC to transmit or receive a large amount of data. With NFS
over UDP, 32KB read and write size may provide good performance, but often using NFS over UDP
results in terrible performance if the network is at all congested. For Linux, a good compromise value
when using NFS over UDP is 8KB or less. If you find even that does not work well, and you cannot
improve network conditions, we recommend switching to NFS over TCP if possible.

It is very important to note that the capabilities of the Linux NFS server are different from the
capabilities of the Linux NFS client. As of the 2.4.21 kernel release, the Linux NFS server does not
support NFS over TCP and does not support rsize and wsize larger than 8KB. The Linux NFS client,
however, supports NFS over both UDP and TCP and rsize and wsize up to 32KB. Some online
documentation is confusing when it refers to features that “Linux NFS” supports. Usually such
documentation refers to the Linux NFS server, not the client. Check with your Linux distributor to
determine whether their kernels support serving files via NFS over TCP.

4.3) Special Mount Options
Consider using the “bg” option if your client system needs to be available even if it cannot mount some
servers. This option causes mount requests to put themselves in the background automatically if a
mount cannot complete immediately. When a client starts up and a server is not available, the client
waits for the server to become available by default. The default behavior, which you can adjust with the
“retry” mount option, results in waiting for almost a week before giving up.

The “fg” option is useful when you need to serialize your mount requests during system initialization.
For example, you probably want the system to wait for /usr to become available before proceeding
with multiuser boot. If you mount /usr or other critical file systems from an NFS server, you should
consider using fg for these mounts. The “retry” mount option has no effect on foreground mounts. A
foreground mount request will fail immediately without any retransmission if any problem occurs.

For security, you can also use the “nosuid” mount option. This causes the client to disable the special
bits on files and directories. The Linux man page for the mount command recommends also disabling
or removing the suidperl command when using this option. Note that the filer also has a “nosuid”
export option, which does roughly the same thing for all clients accessing an export. Interestingly, the
filer’s “nosuid” export option also disables the creation of special devices; if you notice programs that

Network Appliance Inc.

12

TECHNICAL REPORT

use special sockets and devices (such as “screen”) behaving strangely, check for the “nosuid” export
option on your filers.

It is a common trick for system administrators to use the “noatime” mount option on local file systems to
improve overall file system performance by preventing a synchronous metadata update every time a
file is accessed in some way. Because NFS servers, not clients, control the values contained in a file’s
timestamps (access time, metadata change time, and data modify time) by default, this trick is not
effective for NFS mounts. However, filers allow you to reduce the overhead caused by aggressive
atime flushing if you set a volume’s no_atime_update option. On a filer console, type “help vol
options” for details.

4.4) Tuning NFS client cache behavior
Other mount options allow you to tailor the client’s attribute caching and retry behavior. It is not
necessary to adjust these behaviors under most circumstances. However, sometimes you must adjust
NFS client behavior to make NFS appear to your applications more like a local file system, or to
improve performance for metadata-intensive workloads.

There are a few indirect ways to tune client-side caching. First, the most effective way to improve
client-side caching is to add more RAM to your clients. Linux will make appropriate use of the new
memory automatically. To determine how much RAM you need to add, determine how large your active
file set is and increase RAM to fit. This greatly reduces cache turnover rate. You should see fewer read
requests and faster client response time as a result.

Some working sets will never fit in a client’s RAM cache. Your clients may have 128MB or 4GB of RAM,
for example, but you may still see significant client cache turnover. In this case, reducing “cache miss”
latency is the best approach. You can do this by improving your network infrastructure and tuning your
server to improve its performance. Because a client-side cache is not effective in these cases, you may
find that keeping the client’s cache small is beneficial.

Normally, for each file in a file system that has been accessed recently, a client caches file attribute
information, such as a file’s last modification time and size. To detect file changes quickly yet efficiently,
the NFS protocol uses “close-to-open” cache semantics. When a client opens a file, it uses a
GETATTR operation to check that the file still exists and any cached data it has is still up-to-date. A
client checks back with the server only after a timeout indicates that the file’s attributes may be stale.
During such a check, if the server’s version of the attributes has changed, the client purges its cache. A
client can delay writes to a file indefinitely. When a client closes a file, however, it flushes all pending
modifications to the file to the server. This allows a client to provide good performance in most cases,
but means it might take some time before an application running on one client sees changes made by
applications on other clients.

You may also want to improve attribute caching behavior. Due to the requirements of the NFS protocol,
clients must check back with the server every so often to be sure cached attribute information is still
valid. However, adding RAM on the client will not improve the rate at which the client tries to revalidate
parts of the directory structure it has already cached. No matter how much of the directory structure is
cached on the client, it must still validate what it knows when files are opened or when attribute cache
information expires. You can lengthen the attribute cache timeout with the “actimeo” mount option to
reduce the rate at which the client tries to revalidate its attribute cache. With the 2.4.19 kernel release,
you can also use the “nocto” mount option to reduce the revalidation rate even further, at the expense
of cache coherency among multiple clients. The “nocto” mount option is appropriate for read-only

Network Appliance Inc.

13

TECHNICAL REPORT

mount points where files change infrequently, such as a lib, include, or bin directory, static HTML files
or, image libraries. In combination with judicious settings of “actimeo” you can significantly reduce the
number of on-the-wire operations generated by your NFS clients. Be careful to test this setting with
your application to be sure that it will tolerate the delay before the NFS client notices file changes and
fetches the new versions from the server.

The Linux NFS client delays application writes to combine them into larger, more efficiently processed
requests. You can guarantee that a client immediately pushes every write system call an application
makes to servers by using the “sync” mount option. This is useful when an application needs the
guarantee that data is safe on disk before it continues. Frequently such applications already use the
O_SYNC open flag or invoke the flush system call when needed. Thus, the sync mount option is often
not necessary.

Delayed writes and the client’s attribute cache timeout can delay detection of changes on the server by
many seconds while a file is open. The “noac” mount option prevents the client from caching file
attributes. This means that every file operation on the client that requires file attribute information
results in a GETATTR operation to retrieve a file’s attribute information from the server. Note that noac
also causes a client to process all writes to that file system synchronously, just as the sync mount
option does. Disabling attribute caching is only one part of noac; it also guarantees that data
modifications are visible on the server so that other clients using noac can detect them immediately.
Thus noac is shorthand for “actimeo=0,sync.”

When the noac option is in effect, clients still cache file data as long as they detect that a file has not
changed on the server. The noac mount option allows a client to keep very close track of files on a
server so it can discover changes made by other clients quickly. Normally you will not use this option,
but it is important when an application that depends on single system behavior is deployed across
several clients.

Using the noac mount option causes a 40% performance degradation on typical workloads, but some
common workloads, such as sequential write workloads, can be impacted by up to 70%. Database
workloads that consist of random reads and writes are generally less affected by noac. Noac generates
a very large number of GETATTR operations and sends write operations synchronously. Both of these
add significant protocol overhead. The noac mount option trades off single-client performance for client
cache coherency. Only applications that need tight cache coherency among multiple clients require that
file systems be mounted with the noac mount option.

Some applications require direct, uncached access to data on a server. Using the noac mount option is
sometimes not good enough, because even with this option, the Linux NFS client still caches reads. To
ensure your application sees the server’s version of a file’s data and not potentially stale data cached
by the client, your application can lock and unlock the file. This pushes all pending write operations
back to the server and purges any remaining cached data, so the next read operation will go back to
the server rather than reading from a local cache.

Alternatively, the Linux NFS client in the RHEL 3.0 and SUSE SLES 8 SP3 kernels supports direct I/O
to NFS files when an application opens a file with the O_DIRECT flag. Direct I/O is a feature designed
to benefit database applications that manage their own data cache. When this feature is enabled, an
application’s read and write system calls are translated directly into NFS read and write operations. The
Linux kernel never caches the results of any read or write when a file is opened with this flag, so
applications always get exactly what’s on the server. Because of I/O alignment restrictions in some

Network Appliance Inc.

14

TECHNICAL REPORT

versions of the Linux O_DIRECT implementation, applications must be modified to support direct I/O
properly. See the appendix for more information on this feature, and its equivalent in RHEL AS 2.1,
uncached I/O.

For some servers or applications, it is necessary to prevent the Linux NFS client from sending Network
Lock Manager requests. You can use the “nolock” mount option to prevent the Linux NFS client from
notifying the server’s lock manager when an application locks a file. Note, however, that the client still
flushes its data cache and uses more restrictive write back semantics when a file lock is in effect. The
client always flushes all pending writes whenever an application locks or unlocks a file.

For detailed information on configuring and tuning filers in an Oracle® environment, see the Network
Appliance tech reports at www.netapp.com.

4.5) Unmounting NFS File Systems
This section discusses the unique subtleties of unmounting NFS file systems on Linux.

Like other *NIX operating systems, the umount command detaches one or more file systems from a
client’s file system hierarchy (like several other common features of *NIX, the name of this command is
missing a letter). Normally, you use umount with no options, specifying only the path to the root of the
file system you want to unmount.

Sometimes you might want more than a standard unmount operation—for example, when programs
appear to be waiting indefinitely for access to files in a file system or if you want to clear the client’s
data cache.

If you want to unmount all currently mounted NFS file systems, use:

 umount –a –t nfs

Sometimes unmounting a file system becomes stuck. For this, there are two options:

 umount –f /path/to/filesystem/root

This forces an unmount operation to occur if the mounted NFS server is not reachable, as long as there
are no RPC requests on the client waiting for a reply. After kernel 2.4.11,

 umount –l /path/to/filesystem/root

usually causes the kernel to detach a file system from the client’s file system hierarchy immediately, but
allows it to clean up RPC requests and open files in the background.

As mentioned above, unmounting an NFS file system does not interrupt RPC requests that are awaiting
a server reply. If an umount command fails because processes are waiting for network operations to
finish, you must interrupt each waiting process using ^C or an appropriate kill command. Stopping
stuck processes usually happens automatically during system shutdown so that NFS file systems can
be safely unmounted. The NFS client allows these methods to interrupt pending RPC requests only if
the intr option is set for that file system. To identify processes waiting for NFS operations to complete,
use the lsof command.

The umount command accepts file system–specific options via the “-o” flag. The NFS client does not
have any special options.

Network Appliance Inc.

15

TECHNICAL REPORT

4.6) Mount Option Examples
We provide the following examples as a basis for beginning your experimentation. Start with an
example that closely matches your scenario, then thoroughly test the performance and reliability of your
application while refining the mount options you have selected.

On older Linux systems, if you do not specify any mount options, the Linux mount command (or the
automounter) automatically chooses these defaults:

 mount –o rw,fg,vers=2,udp,rsize=4096,wsize=4096,hard,intr,
 timeo=7,retrans=5

These default settings are designed to make NFS work right out of the box in most environments.
Almost every NFS server supports NFS version 2 over UDP. Rsize and wsize are relatively small
because some network environments fragment large UDP packets, which can hurt performance if there
is a chance that fragments can be lost. The RPC retransmit timeout is set to 0.7 seconds by default to
accommodate slow servers and networks.

On clean single-speed networks, these settings are unnecessarily conservative. Over some firewalls,
UDP packets larger than 1,536 are not supported, so these settings do not work. On congested
networks, UDP may have difficulty recovering from large numbers of dropped packets. NFS version 2
write performance is usually slower than NFS version 3. As you can see, there are many opportunities
to do better than the default mount options.

Here is an example of mount options that are reasonable defaults. In fact, on many newer Linux
distributions, these are the default mount options.

 mount –o rw,bg,vers=3,tcp,timeo=600,rsize=32768,wsize=32768,hard,intr

Using the bg option means our client will be able to finish booting without waiting for filers that may be
unavailable because of network outages. The hard option minimizes the likelihood of data loss during
network and server instability, while intr allows users to interrupt applications that may be waiting for a
response from an unavailable server. The tcp option works well on many typical LANs with 32KB read
and write size. Using “timeo=600” is a good default for TCP mounts, but for UDP mounts, “timeo=4”
might be more appropriate.

Here is an example of a poor combination of mount options:

 mount –o rw,soft,udp,rsize=1024,wsize=1024

Using soft mounts with UDP is a recipe for silent data corruption. On Linux 2.4 with these mount
options it is made worse. The “wsize=1024” mount option on Linux 2.4 mandates synchronous writes;
writes go to the server one at a time rather than in groups, and the client requires the server to push
data onto disk before responding to the client’s write operation request. If a server gathers writes to
improve disk bandwidth, it delays its response to each write request waiting for more write requests,
which can trigger the client to retry write requests. A server that delays responding to writes as long as
several hundred milliseconds will probably cause the client to drop requests unnecessarily after several
retries (note that filers usually do not delay writes because they can cache these requests in nonvolatile
RAM to fulfill NFSv2’s requirement for stable writes). To address these issues, always use the hard
option and use read and write sizes larger than your client’s page size.

When mounting a group of home directories over a WAN, you might try:

Network Appliance Inc.

16

TECHNICAL REPORT

 mount –o rw,bg,vers=3,nosuid,tcp,timeo=600,retrans=2,rsize=2048,
 wsize=2048,soft,intr

This example uses NFS over TCP because NFS clients often reside on slower, less capable networks
than servers. In this case, the TCP protocol can provide fast recovery from packet losses caused by
network speed transitions and noisy phone lines. Using the nosuid mount option means users cannot
create or use suid programs that reside in their home directories, providing a certain degree of safety
from Trojan horses. Limiting the maximum size of read and write operations gives interactive sessions
on slow network links an advantage by keeping very large packets off the wire. On fast networks, large
rsize and wsize values, such as 32768, are more appropriate. The soft option helps to recover quickly
from server or network outages with a minimal risk of possible data loss, and the “timeo=600” option
allows the TCP protocol a long time to attempt recovery before the RPC client interferes.

When mounting a filer from an anonymous FTP or HTTP server, you could use:

 mount –o ro,fg,vers=3,tcp,timeo=600,retrans=2,rsize=32768,wsize=32768,
 hard,nointr,nocto,actimeo=600

Here we use the fg option to ensure that NFS files are available before the FTP or HTTP server is
started. The ro option anticipates that the FTP or HTTP server will never write data into files. The nocto
option helps reduce the number of GETATTR and LOOKUP operations at the expense of tight cache
coherency with other clients. The FTP server will see changes to files on the server after its attribute
cache times out (usually after about one minute). Lengthening the attribute cache timeout also reduces
the attribute cache revalidation rate.

When mounting a filer for use with a single-instance Oracle database system over a clean Gigabit
Ethernet, you might try:

 mount –o rw,fg,vers=3,tcp,timeo=600,retrans=2,hard,nointr

Again, the fg option ensures that NFS file systems are available before the database instance starts up.
We use TCP here because even though the physical network is fast and clean, TCP adds extra data
integrity guarantees. The hard option ensures data integrity in the event of network problems or a
cluster failover event. The nointr option prevents signals from interrupting NFS client operations. Such
interruptions may occur during a shutdown abort, for instance, and are known to cause database
corruption. File locking should be enabled when running databases in production as a degree of
protection against corruption caused by improper backup procedures (for example, another instance of
the same database running at a disaster recovery site against the same files as your normal production
instance).

See the appendix for more information on how to set up databases on Linux, including details on how
to adjust the Linux read-ahead algorithm.

In summary: Use NFS version 3 if possible. Use NFS over TCP wherever possible. If NFS over UDP is
slow or hangs, this is a sign of network problems, so try TCP instead. Avoid using the soft mount
option. Try the special mount options if you need an extra boost in performance.

Network Appliance Inc.

17

TECHNICAL REPORT

5) Performance
This section covers aspects of Linux client performance, with a special focus on networking.

5.1) Linux NFS client performance
The Linux NFS client runs in many different environments, from light desktop usage to database with a
dedicated private SAN. In general, the Linux NFS client can perform as well as most other NFS clients,
and better than some, in these environments. However, you must plan your mount options and observe
network behavior carefully to ensure the Linux NFS client performs at its best.

On low-speed networks (10Mb/sec or 100Mb/sec), the Linux NFS client can read and write as fast as
the network allows. This means Linux NFS clients running anything faster than a 400 MHz processor
can saturate a 100Mb link. Slower network interfaces (for example, 16-bit PCMCIA cards on laptops)
noticeably reduce client-side NFS bandwidth. Be sure your clients have enough CPU to drive the
network while concurrently handling your application workload.

If your clients use high-performance networking (gigabit or faster), you should plan to provide enough
CPU and memory bandwidth on your clients to handle the interrupt and data rate. The NFS client
software and the gigabit driver cut into resources available to applications, so make sure there are
enough to go around. Most gigabit cards that support 64-bit PCI or better should provide good
performance. We have found these cards work well with Linux:

• SysKonnect—The SysKonnect SK-98XX series cards work very well with Linux and support
single- and dual-fiber and copper interfaces for better performance and availability. A mature
driver for this card exists in the 2.4 kernel source distribution.

• Broadcom—Many cards and switches use this chipset, including the ubiquitous 3Com
solutions. This provides a high probability of compatibility between your switches and your
clients. The driver software for this chipset appeared in the 2.4.19 Linux kernel and is included
in Red Hat distributions with earlier 2.4 kernels. Check Broadcom’s web site for driver updates,
as several recent drivers have had performance problems.

• Intel EEPro/1000—This appears to be the fastest gigabit card available for Intel-based
systems, but the card’s driver software is included only in recent kernel source distributions
(2.4.20 and later) and may be somewhat unstable. You can find the card’s driver software for
earlier kernels at Intel’s Web site. There are reports that the jumbo frame MTU for Intel’s cards
is only 8,998 bytes, not the standard 9,000 bytes.

SysKonnect now publishes an independent Gigabit Ethernet NIC shootout on its Web site. See the
appendix for information on how to obtain this document.

For most purposes, Gigabit Ethernet over copper works about as well as Gigabit Ethernet over fiber for
short-distance links. Category 5E or Category 6 cables are necessary for reliable performance on
copper links. Fiber adds long-haul capabilities and even better reliability, but at a significant cost. Some
find that copper terminations are more rugged and reliable than fiber terminations.

All of these cards support Gigabit Ethernet’s jumbo frames option. If you use Linux NFS clients and
filers together on an unrouted network, consider using jumbo frames to improve the performance of
your application. Be sure to consult your switch’s command reference to make sure it is capable of
handling jumbo frames in your environment. There are some known problems in Linux drivers and the

Network Appliance Inc.

18

TECHNICAL REPORT

networking layer when using the maximum frame size (9,000 bytes). If you experience unexpected
performance slowdowns when using jumbo frames, try reducing the MTU to, say, 8,960 bytes.

When using jumbo frames on more complex networks, ensure that every link in the network between
your client and server support them and have the support enabled. If NFS over TCP is working with
jumbo frames, but NFS over UDP is not, that may be a sign that some part of your network does not
support jumbo frames.

The Linux NFS client and network layer are sensitive to network performance and reliability. After you
have set your mount options as we recommend, you should get reasonable performance. If you do not
and your workload is not already CPU-bound, you should begin looking at network conditions between
your clients and servers.

For example, on a clean Gigabit Ethernet network, a single Linux client can write to an F880 filer as
fast as the filer can put data on disk. If there is other network traffic or packet loss, write performance
from a Linux client on NFS over UDP can drop rapidly, though on NFS over TCP, performance should
remain reasonable. Read performance depends on the size and speed of the client’s and the filer’s
memory.

The most popular choices for 100BaseT network interfaces are the Intel EEPro/100 series and the
3Com 3C905 family. These are often built into server mainboards and can support network booting via
PXE, described in more detail later in this document. A recent choice among mainboard integrators is
the RTL chipset. All of these implementations perform well in general, but some versions of their driver
software have known bugs. Check your distributors errata database for more information. Recent
versions should work fairly well.

When choosing a 100BaseT card for your Linux systems, look for a card that has a mature driver that is
already integrated into the Linux kernel. Features such as checksum offloading are beneficial to
performance. You can use Ethernet bonding, or trunking, to improve the reliability or performance of
your client.

Most network interface cards use autonegotiation to obtain the fastest settings allowed by the card and
the switch port to which it attaches. Sometimes, PHY chipset incompatibilities may result in constant
renegotiation or negotiating half duplex or a slow speed. When diagnosing a network problem, be sure
your Ethernet settings are as you expect before looking for other problems. To solve an autonegotiation
problem, you may be inclined to hard code the settings you want, but avoid this because it only masks
a deeper problem. Work with your switch and card vendors to resolve these problems.

In summary: Whether you use TCP or UDP, be sure you have a clean network. Ensure your network
cards always negotiate the fastest settings, and that your NIC drivers are up to date. Increasing the
size of the client’s socket buffer (see appendix) is always a wise thing to do.

5.2) Linux NFS Client Architecture
There are five layers of software between your application and the network. First, the generic VFS layer
in Linux adapts system calls made by your application to generic interface calls supported by all file
systems. It also manages the main file system caches, including the data cache and the attribute
caches.

The second layer is the NFS client itself, which adapts the generic file system interface calls into NFS
RPC requests to a server. The client is responsible for converting the local environmental conditions of

Network Appliance Inc.

19

TECHNICAL REPORT

the native kernel to the NFS protocol and back. It generates RPC requests that it hands to the RPC
client.

The RPC client is the third layer. It takes whole NFS RPC requests from the client and converts them
into socket calls. It marshals and unmarshals data, manages byte ordering, waits for server replies, and
runs extra tasks, such as the flusher daemon, when necessary.

The next lower layer is the Linux network layer, which handles TCP, UDP, and IP processing. The
bottom layer on the client contains the network interface device driver and kernel interrupt scheduling
logic.

text

S y s t e m c a l l i n t e r f a c e

VFS file system interface

RPC client

Socket interface

TCP / UDP / IP

NFS client FS

NIC drivers

Credential
cache

Asynchronous
tasks

rpciod

ApplicationApplicationApplication

User space

Kernel space

Page
cache

VFS Layer
Dentry
cache

Inode
cache

Figure 1) Linux NFS client schematic diagram.
There are five individual layers of software between an application and the network. These manage data and attribute caches, asynchronous
tasks, and network protocol translation.

Network Appliance Inc.

20

TECHNICAL REPORT

This architecture is unlike that of some other NFS client implementations, which do not separate their
NFS file system implementation from the RPC client. Other implementations use a transport-
independent RPC implementation that is less efficient than using sockets directly, as Linux does.

The stability and performance of what you know as the Linux NFS client depend on the ability of all of
these layers to function well. Very often, the NFS client layer functions well and properly, but some
other part of the kernel, such as the Linux TCP/IP implementation or page cache, or something outside
your Linux client such as your network topology, causes a problem that appears as though your NFS
client is misbehaving. When diagnosing client problems, you should always keep in mind that there are
many possible ways for a complex system such as this to misbehave.

5.3) Diagnosing Performance Problems with the Linux NFS Client
Now that you understand how the client is structured, let us review specific methods and tools for
diagnosing problems on the client. The client works best when the network does not drop any packets.
The NFS and RPC clients also compete with applications for available CPU resources. These are the
two main categories of client performance problems you may encounter.

Checking for network packet loss is the first area to look for problems. With NFS over UDP, a high
retransmission count can indicate packet loss due to network or server problems. With NFS over TCP,
the network layer on the client handles network packet loss, but server problems still show up as
retransmissions. On some 2.4 kernels, TCP retransmissions are also a sign of large application writes
on the client that have filled the RPC transport socket’s output buffer.

To see retransmissions, you can use nfsstat –c at a shell prompt. At the top of the output, you will
see the total number of RPCs the client has sent and the number of times the client had to retransmit
an RPC. The retransmit rate is determined by dividing the number of retransmissions by the total
number of RPCs. If the rate exceeds a few tenths of a percent, network losses may be a problem for
your performance.

NFS over TCP does not show up network problems as clearly as UDP and performs better in the face
of packet loss. If your TCP mounts run faster than your UDP mounts, that’s a sure sign that the network
between your clients and your filer is dropping packets or is otherwise bandwidth-limited. Normally UDP
is as fast as or slightly faster than TCP. The client keeps network statistics that you can view with
netstat –s at a shell prompt. Look for high error counts in the IP, UDP, and TCP sections of this
command’s output. The same command also works on a filer’s console. Here look for nonzero counts
in the “fragments dropped after timeout” and “fragments dropped (dup or out of space)” fields in the IP
section.

There are a few basic sources of packet loss.

1. If the end-to-end connection between your clients and servers contains links of different speeds
(for instance, the server is connected via Gigabit Ethernet, but the clients are all connected to
the network with 100Base-TX), packet loss occurs at the point where the two speeds meet. If a
gigabit-connected server sends a constant gigabit stream to a 100Mb client, only one packet in
10 can get to the client. UDP does not have any flow control built in to slow the server’s
transmission rate, but TCP does; thus, it provides reasonable performance through a link speed
change.

2. Another source of packet loss is small packet buffers on switches. If either the client or server
bursts a large number of packets, the switch may buffer them before sending them on. If the

Network Appliance Inc.

21

TECHNICAL REPORT

switch buffer overflows, the packets are lost. It is also possible that a switch can overrun a
client’s NIC in a similar fashion. This becomes a greater possibility for large UDP datagrams
because switches and NICs tend to burst an entire IP packet (all of its fragments) at once.

3. The client’s IP layer will drop UDP datagrams if the client’s send or receive socket buffer runs
out of space for any reason. The client’s RPC client allocates a socket for each mount. By
default, these sockets use 64KB input and output buffers, which is too small on systems that
use large rsize or wsize or generate a large number of NFS operations in a short period. To
increase the size of these buffers, follow the instructions in the appendix to this document.
There is no harm in doing this on all your Linux clients unless they have less than 16MB of
RAM.

If you have resolved these issues and still have poor performance, you can attempt end-to-end
performance testing between one of your clients and a similar system on the server’s LAN using a tool
such as ttcp or iPerf. This exposes problems that occur in the network outside of the NFS protocol.
When running tests such as iPerf, select UDP tests, as these directly expose network problems. If
your network is full duplex, run iPerf tests in both directions concurrently to ensure your network is
capable of handling a full load of traffic in both directions simultaneously.

If you find some client operations work normally while others cause the client to stop responding, try
reducing your rsize and wsize to 1,024 to see if there are fragmentation problems preventing large
operations from succeeding.

One more piece of network advice: Become familiar with network snooping tools such as tcpdump,
tcpslice, and ethereal. On the filer, you can run pktt, which generates trace files in tcpdump
format that you can analyze later on a client. These tools provide the last word in what is really
happening on your network between your clients and filers. You may need to run both tcpdump on a
client and pktt on your filer at the same time and compare the traces to determine where the problem
lies.

You must explicitly specify several options to collect clean network traces with tcpdump. Be sure the
snaplen option (-s) is set large enough to capture all the interesting bytes in each packet, but small
enough that tcpdump is not overwhelmed with incoming traffic. If tcpdump is overwhelmed, it drops
incoming packets, making the network trace incomplete. The default value is 96 bytes, which is too
short to capture all the RPC and NFS headers in each packet. Usually a value of 256 bytes is a good
compromise for UDP, but you can set it to zero if you need to see all the data in each packet. Snooping
TCP packets requires a zero snaplen because TCP can place several RPC requests in a single
network packet. If snaplen is short, the trace will miss RPCs that are contained near the end of long
packets.

In addition, always use filtering to capture just the traffic between the client and the server. Again, this
reduces the likelihood that tcpdump or your local file system will be overwhelmed by incoming traffic
and makes later analysis easier. You can collect traffic to or from your client using the hostname filter.
Several other tcpdump options allow you to collect traffic destined for one or more hosts at a time;
read the manual to find out more.

An automounter can cause a lot of network chatter, so it is best to disable the automounter on your
client and set up your mounts by hand before taking a network trace.

Network Appliance Inc.

22

TECHNICAL REPORT

To find out if your application is competing for CPU resources with the NFS client, RPC client, or
network layer on your client system, you can use the top program. If you see the rpciod process at
the top of the listing, you know that NFS operations are dominating the CPU on your system. In
addition, if you see system CPU percentage increase significantly when your application accesses NFS
data, this also can indicate a CPU shortage. In many cases, adding more CPUs or faster CPUs helps.
Switching to UDP may also be a choice for reducing CPU load if an uncongested high-speed network
connects your clients and filer. As the Linux NFS client and networking layer improve over time, they
will become more CPU-efficient and include features such as TCP offload that reduce the amount of
CPU required to handle large amounts of data.

There are certain cases where processes accessing NFS file systems may hang. This is most often
due to a network partition or server outage. Today’s client implementation is robust enough to recover
in most cases. Occasionally a client fails because of high load or some other problem. Unfortunately,
little can be done in these cases other than rebooting the client and reporting the problem.

5.4) Error Messages in the Kernel Log
There are two messages that you may encounter frequently in the kernel log (this is located in
/var/log/messages on Linux systems). The first is server not responding. This message
occurs after the client retransmits several times without any response from a server. If you know the
server is up, this can indicate the server is sluggish or there are network problems. If you know the
server is down, this indicates the client is waiting for outstanding operations to complete on that server,
and it is likely there are programs waiting for the server to respond.

The second, perhaps more frustrating, message is can’t get request slot. This message
indicates that the RPC client is queuing messages and cannot send them. This is usually due to
network problems such as a bad cable, incorrectly set duplex or flow control options, or an overloaded
switch. It may appear as if your client is stuck at this point, but you should always wait at least 15
minutes for network and RPC client timeouts to recover before trying harsher remedies such as
rebooting your client or filer.

5.5) Oops
If a program encounters an unrecoverable situation in user space, it stops running and dumps core. If
the same process encounters an unrecoverable situation within the Linux kernel, the kernel attempts to
isolate the process, stop it, and report the event in the kernel log. This is called an “oops.” Many times
a failing process holds system resources that are not released during an oops. The kernel can run for a
few more moments, but generally other processes deadlock or themselves terminate with an oops
when they attempt to allocate resources that were held by the original failing process.

If you are lucky, the kernel log contains useful information after the system recovers. Red Hat kernels
automatically translate the kernel log output into symbolic information that means something to kernel
developers. If the oops record contains only hexadecimal addresses, try using the ksymoops tool in the
kernel source tree to decode the addresses.

Sometimes using a serial console setup can help capture output that a failing kernel cannot write into
its log. Use a crossover cable (also sometimes called a file transfer or null modem cable) to connect
your client to another system’s serial console via its COM1 or COM2 port. On the receiving system, use
a tool such as the minicom program to access the serial port. Serial console support is built into
kernels distributed by Red Hat, but be sure to enable the serial console option in kernels you build
yourself. Finally, you should set appropriate boot command line options (instructions provided in the

Network Appliance Inc.

23

TECHNICAL REPORT

Documentation directory of the Linux kernel source tree) to finish enabling the serial console.
Optionally, you can also update /etc/inittab to start a mingetty process on your serial console if
you’d like to log in there.

5.6) Getting Help
Most Linux NFS client performance problems are due to lack of CPU or memory on the client, incorrect
mount options, or packet losses on the network between the client and servers. If you have set up your
client correctly and your network is clean, but you still suffer from performance or reliability problems,
you should contact experts to help you proceed further.

Currently, there is no professionally maintained knowledge base that tracks Linux NFS client issues.
However, expert help is available on the Web at nfs.sourceforge.net, where you can find a Linux NFS
Frequently Asked Questions list, as well as several how-to documents. There is also a mailing list
specifically for helping administrators get the best from Linux NFS clients and servers. Network
Appliance customers can also search the NOW database for Linux-related issues. Network Appliance
also maintains some of the more salient Linux issues within its BURT database. See the appendix in
this report for more information.

If you find there are missing features or performance or reliability problems, we encourage you to
participate in the community development process. Unlike proprietary operating systems, new features
appear in Linux only when users implement them. Problems are fixed when users are diligent about
reporting them and following up to see that they are really fixed. If you have ever complained about the
Linux NFS client, here is your opportunity to do something about it.

When you have found a problem with the Linux NFS client, you can report it to your Linux distributor.
Red Hat, for instance, supports an online bug database based on bugzilla. You can access Red Hat’s
bugzilla instance at http://bugzilla.redhat.com/.

When filing a BURT that relates to Linux client misbehavior with a filer, be sure you report:

• The Linux distribution and the Linux kernel release (e.g., Red Hat 7.2 with kernel 2.4.7-10).

• The client’s kernel configuration (/usr/src/linux/.config is the usual location) if you
built the kernel yourself.

• Any error messages that appear in the kernel log, such as oops output or reports of network or
server problems.

• All mount options in effect (use cat /proc/mounts to display them, and do not assume they
are the same as the options you specified on your mount commands).

• Details about the network topology between the client and the filer, such as how busy the
network is, how many switches and routers, what link speeds, and so on. You can report
network statistics on the client with nfsstat –c and netstat –s.

• Client hardware details, such as SMP or UP, which NIC, and how much memory. You can use
the lspci –v command and cat /proc/cpuinfo on most distributions to collect most of
this.

• Include a network trace and/or a dump of debugging messages (see the appendix).

Network Appliance Inc.

24

TECHNICAL REPORT

Most importantly, you should carefully describe the symptoms on the client. A “client hang” is generally
not specific enough. This could mean the whole client system has deadlocked or that an application on
the client has stopped running. Always be as specific as you can.

In summary: If you cannot find what you need in this paper or from other resources, contact your Linux
distributor or Network Appliance to ask for help.

Network Appliance Inc.

25

TECHNICAL REPORT

6) Other Sundries
This section covers auxiliary services you may need to support advanced NFS features.

6.1) Telling Time
The clock on your Linux clients must remain synchronized with your filers to avoid problems such as
authentication failures or incomplete software builds. Usually you set up a network time service such as
NTP and configure your filers and clients to update their time using this service. After you have properly
configured a network time service, you can find more information on enabling NTP on your filers in the
Data ONTAP System Administrator’s Guide.

Linux distributions usually come with a prebuilt network time protocol daemon. If your distribution does
not have an NTP daemon, you can build and install one yourself by downloading the latest ntpd
package from the Internet (see the appendix).

There is little documentation available for the preinstalled NTP daemon on Linux. To enable NTP on
your clients, be sure the ntpd startup script runs when your client boots (look in /etc/rc.d or
/etc/init.d; the exact location varies, depending on your distribution; for Red Hat systems, you can
use chkconfig –level 35 ntpd on). You must add the network time server’s IP address to
/etc/ntp/step-tickers and /etc/ntp.conf.

If you find that the time protocol daemon is having some difficulty maintaining synchronization with your
time servers, you may need to create a new drift file. Make sure your client’s /etc/ntp directory and
its contents are permitted to the ntp user and group to allow the daemon to update the drift file, and
disable authentication and restriction commands in /etc/ntp.conf until you are sure everything is
working correctly.

As root, shut down the time daemon and delete the drift file (usually /etc/ntp/drift). Now restart
the time daemon again. After about 90 minutes, it will write a new drift file into /etc/ntp/drift. Your
client system should keep better time after that.

Always keep the date, time, and time zone on your filer and clients synchronized. Not only will you
ensure that any time-based caching on your clients work correctly, but it will also make debugging
easier by aligning time stamps in client logs and on client network trace events with the filer’s message
log and pktt traces.

6.2) Security
Today, the Linux NFS client supports only two types of authentication: AUTH_NULL and AUTH_UNIX.
In future releases, Linux will support Kerberos 5, just as Solaris™ does today, via RPCSEC GSS. Later
versions of the NFS protocol (e.g., NFSv4) support a wide variety of authentication and security
models, including Kerberos, and a form of public key authentication called SPKM.

To maintain the overall security of your Linux clients, be sure to check for and install the latest security
updates from your distributor. You can find specific information on Linux NFS client security in Chapter
6 of the NFS how-to located at nfs.sourceforge.net (see appendix).

When a host wants to send UDP packets that are larger than the network’s maximum transfer unit, or
MTU, it must fragment them. Linux divides large UDP packets into MTU-sized IP fragments and sends
them to the receiving host in reverse order; that is, the fragment that contains the bytes with the highest
offset are sent first. Because Linux sends IP fragments in reverse order, its NFS client may not
interoperate with some firewalls. Certain modern firewalls examine the first fragment in a packet to

Network Appliance Inc.

26

TECHNICAL REPORT

determine whether to pass the rest of the fragments. If the fragments arrive in reverse order, the
firewall discards the whole packet. A possible workaround is to use only NFS over TCP when crossing
such firewalls. If you find some client operations work normally while others cause the client to stop
responding, try reducing your rsize and wsize to 1,024 to see if there are fragmentation problems
preventing large RPC requests from succeeding.

Firewall configuration can also block auxiliary ports that the NFS protocol requires to operate. For
example, traffic may be able to pass on the main NFS port numbers, but if a firewall blocks the mount
protocol or the lock manager or port manager ports, NFS cannot work. This applies to standalone
router/firewall systems as well as local firewall applications such as tcpwrapper, ipchains, or iptables
that might run on the client system itself. Be sure to check if there are any rules in /etc/hosts.deny
that might prevent communications between your client and server.

6.3) Network Lock Manager
The NFS version 2 and 3 protocols use separate side-band protocols to manage file locking. On Linux
2.4 kernels, the lockd daemon manages file locks using the NLM (Network Lock Manager) protocol,
and the rpc.statd program manages lock recovery using the NSM (Network Status Monitor) protocol
to report server and client reboots. The lockd daemon runs in the kernel and is started automatically
when the kernel starts up at boot time. The rpc.statd program is a user-level process that is started
during system initialization from an init script. If rpc.statd is not able to contact servers when the
client starts up, stale locks will remain on the servers that can interfere with the normal operation of
applications.

The rpcinfo command on Linux can help determine whether these services have started and are
available. If rpc.statd is not running, use the chkconfig program to check that its init script (which
is usually /etc/init.d/nfslock) is enabled to run during system bootup. If the client host’s network
stack is not fully initialized when rpc.statd runs during system startup, rpc.statd may not send a
reboot notification to all servers. Some reasons network stack initialization can be delayed are slow NIC
devices, slow DHCP service, or CPU-intensive programs running during system startup. Network
problems external to the client host may also cause these symptoms.

Because status monitoring requires bidirectional communication between server and client, some
firewall configurations can prevent lock recovery from working. Firewalls may also significantly restrict
communication between a client’s lock manager and a server. Network traces captured on the client
and server at the same time usually reveal a networking or firewall misconfiguration. Read the section
on using Linux NFS with firewalls carefully if you suspect a firewall is preventing lock management from
working.

Your client’s nodename determines how a filer recognizes file lock owners. You can easily find out what
your client’s nodename is using the uname –n or hostname command. (A system’s nodename is set
on Red Hat systems during boot using the HOSTNAME value set in /etc/sysconfig/network.) The
rpc.statd daemon determines which name to use by calling gethostbyname(3), or you can
specify it explicitly when starting rpc.statd using the “-n” option.

If the client’s nodename is fully qualified (that is, it contains the hostname and the domain name spelled
out), then rpc.statd must also use a fully qualified name. Likewise, if the nodename is unqualified,
then rpc.statd must use an unqualified name. If the two values do not match, lock recovery will not
work. Be sure the result of gethostbyname(3) matches the output of uname –n by adjusting your
client’s nodename in /etc/hosts, DNS, or your NIS databases.

Network Appliance Inc.

27

TECHNICAL REPORT

Similarly, you should account for client hostname clashes in different subdomains by ensuring that you
always use a fully qualified domain name when setting up a client’s nodename during installation. With
multihomed hosts and aliased hostnames, you can use rpc.statd’s “-n” option to set unique
hostnames for each interface. The easiest approach is to use each client’s fully qualified domain name
as its nodename.

When working in high-availability database environments, test all worst-case scenarios (such as server
crash, client crash, application crash, network partition, and so on) to ensure lock recovery is
functioning correctly before you deploy your database in a production environment. Ideally, you should
examine network traces and the kernel log before, during, and after the locking/disaster/locking
recovery events.

The file system containing /var/lib/nfs must be persistent across client reboots. This directory is
where the rpc.statd program stores information about servers that are holding locks for the local
NFS client. A tmpfs file system, for instance, is not sufficient; the server will fail to be notified that it
must release any POSIX locks it might think your client is holding if it fails to shut down cleanly. That
can cause a deadlock the next time you try to access a file that was locked before the client restarted.

Locking files in NFS can affect the performance of your application. The NFS client assumes that if an
application locks and unlocks a file, it wishes to share that file’s data among cooperating applications
running on multiple clients. When an application locks a file, the NFS client purges any data it has
already cached for the file, forcing any read operation after the lock to go back to the server. When an
application unlocks a file, the NFS client flushes any writes that may have occurred while the file was
locked. In this way, the client greatly increases the probability that locking applications can see all
previous changes to the file.

However, this increased data cache coherency comes at the cost of decreased performance. In some
cases, all of the processes that share a file reside on the same client; thus aggressive cache purging
and flushing unnecessarily hamper the performance of the application. Solaris allows administrators to
disable the extra cache purging and flushing that occur when applications lock and unlock files with the
“llock” mount option. Note well that this is not the same as the “nolock” mount option in Linux. The
“nolock” mount option disables NLM calls by the client, but the client continues to use aggressive cache
purging and flushing. Essentially this is the opposite of what Solaris does when “llock” is in effect.

6.4) Using the Linux Automounter
For an introduction to configuring and using NFS automounters, consult Chapter 9 of O’Reilly’s
“Managing NFS and NIS, 2nd Edition” (see the appendix for URL and ISBN information).

Because Linux minor device numbers have only eight bits, a single client cannot mount more than 250
or so NFS file systems. The major number for NFS mounts is the same as for other file systems that do
not associate a local disk with a mount point. These are known as anonymous file systems. Because
the NFS client shares the minor number range with other anonymous file systems, the maximum
number of mounted NFS file systems can be even less than 250. In later releases of Linux, more
anonymous device numbers are available, thus the limit is somewhat higher.

The preferred mechanism to work around this problem is to use an automounter. This also helps
performance problems that occur when mounting very large root-level directories. There are two Linux
automounters available: AMD and automounter. The autofs file system is required by both and comes
built into modern Linux distributions. More information is available on Linux automounters on the Web;
see the appendix for the specific URL.

Network Appliance Inc.

28

TECHNICAL REPORT

A known problem with the automounter in Linux is that it polls NFS servers on every port before
actually completing each mount to be sure the mount request won’t hang. This can result in significant
delays before an automounted file system becomes available. If your applications hang briefly when
they transition into an automounted file system, make sure your network is clean and that the
automounter is not using TCP to probe the filer’s portmapper. Ensure your infrastructure services, such
as DNS, respond quickly and with consistent results. Also consider upgrading your filer to the latest
release of Data ONTAP.

An automounter can cause a lot of network chatter, so it is best to disable the automounter on your
client and set up static mounts before taking a network trace. Automounters depend on the availability
of several network infrastructure services. If any of these services is not reliable or performs poorly, it
can adversely affect the performance and availability of your NFS clients. When diagnosing an NFS
client problem, triple-check your automounter configuration first. It is often wise to disable the
automounter before drilling into client problem diagnosis.

The Linux automounter is a single process, and handles a single mount request at a time. If one such
request becomes stuck, the automounter will no longer respond, causing applications to hang while
waiting to enter a file system that has yet to be mounted. If you find hanging applications on a client
that is managed with the automounter, be sure to check that the automounter is alive and is responding
to requests.

Some versions of Data ONTAP do not allow mount operations to occur during the small window when a
fresh version of a snapmirrored replica is brought online. If the automounter attempts to mount a
volume during this brief window, it will fail, but a mount request moments later will succeed. There is no
workaround for this problem by adjusting your automounter configuration, but upgrading to the latest
version of Data ONTAP should resolve the issue.

Using an automounter is not recommended for production servers that may need immediate access to
files after long periods of inactivity. Oracle, for example, may need immediate access to its archive files
every so often, but an automounter may unmount the archive file system due to inactivity.

6.5) Net booting your Linux NFS clients
Intel systems can support network booting using DHCP, BOOTP, and TFTP. The Intel standard for
supporting network booting is called a preexecution environment, or PXE. Usually this requires network
interface hardware that contains a special PROM module that controls the network boot process.
Network booting is especially helpful for managing clusters, blade servers, or a large number of
workstations that are similarly configured.

Generally, Linux is loaded via a secondary loader such as grub, lilo, or syslinux. The secondary loader
of choice for network booting is pxelinux, which comes in the syslinux distribution. See the appendix for
information on how to obtain and install the syslinux distribution.

Data ONTAP releases 6.3.2 and 6.4 support pxelinux, allowing Linux to boot over a network. Earlier
versions of Data ONTAP support booting filers, but do not support pxelinux because certain TFTP
options were missing in the filer’s TFTP server. To enable TFTP access to your filer, see the Data
ONTAP System Administrator’s Guide.

You must ensure that your client hardware supports network booting. Both the client’s mainboard and
network interface card must have support for network booting built in. Usually you can tell whether
network booting is supported by reviewing the BIOS settings on your client or by consulting the

Network Appliance Inc.

29

TECHNICAL REPORT

mainboard manual for information on how to set up network booting on your client hardware. The
specific settings vary from manufacturer to manufacturer.

You must configure a DHCP server on the same LAN as your clients. A DHCP server provides unique
network configuration information for each host on a commonly administered network. For network
booting, the DHCP server also instructs each client where to find that client’s boot image. You can find
instructions for configuring your DHCP server to support network booting included with the pxelinux
distribution. The specific instructions for setting up a DHCP server vary from vendor to vendor.

If you intend to share a common root file system among multiple Linux clients, you must create the root
file system on a filer using NFSv2. This is because of problems with how filers interpret major and
minor device numbers and because of differences between how NFSv2 and NFSv3 Linux clients
transmit these numbers. Linux clients, unless told otherwise, attempt to mount their root file systems
with NFSv2. If the file system was created using NFSv3, the major and minor numbers will appear
incorrect when mounted with NFSv2. Kernels use these numbers to match the correct device driver to
device special files (files that represent character and block devices). If the numbers are wrong, the
Linux kernel will not be able to find its console or root file system, thus it cannot boot.

When setting up multiple clients with NFS root file systems, common practice is to maintain a separate
root file system for each client and mount each with “ro,nolock.” Sharing a root file system among
clients is not recommended.

Note that /var/lib/nfs must be persistent across reboots and unique for each client. A tmpfs file
system per client, for instance, is not sufficient; the server will fail to be notified that it must release any
POSIX locks it might think your client is holding if it fails to shut down cleanly. That can cause a
deadlock the next time you try to access a file locked before the client restarted. If each client mounts a
private /var/lib/nfs directory via NFS, it must be mounted using the nolock mount option, and
before rpc.statd and lockd have started on the client.

For more information on Linux cluster computing, search the Internet for Beowulf or OpenMosix, or see
the Linux high-availability site listed in the appendix of this document.

In summary: Make sure to check with your Linux distributor for any errata on a regular basis to maintain
a secure system. Be sure your filers and clients agree on what time it is. If your client has trouble
seeing the filer, look for packet filtering on your client or switches. Make each client’s nodename its fully
qualified domain name.

Network Appliance Inc.

30

TECHNICAL REPORT

7) Executive Summary
When setting up a Linux NFS client, you should try to get the latest kernel supported by your Linux
distributor or hardware vendor.

Mount with NFS over TCP and NFS version 3 where possible, and use the largest rsize and wsize that
still provide good performance. Start with the hard and intr mount options.

Be sure the network between your clients and filer drops as few packets as possible.

If you must use NFS over UDP, make sure to follow the instructions in the appendix for enlarging the
transport socket buffers on all your UDP mounts.

If you have special needs, review this document carefully. Always look for the latest errata and bug
fixes from your Linux distributor and watch for new Network Appliance technical reports.

Network Appliance Inc.

31

TECHNICAL REPORT

8) Appendix
8.1) Related Material
Network Appliance NOW Web site: Type in Linux in the NOW PowerSearch text box.

SysKonnect’s Gigabit Ethernet performance study
 www.syskonnect.com/syskonnect/performance/gig-over-copper.htm

Red Hat 7.3 performance alert details
 http://now.netapp.com/Knowledgebase/solutionarea.asp?id=ntapcs6648

O’Reilly’s “Managing NFS & NIS, Second Edition” (ISBN 1-56592-510-6)
 www.oreilly.com/catalog/nfs2

Linux tcpdump manual page
 man tcpdump

Tcpdump home page
 www.tcpdump.org

Linux ethereal manual page
 man ethereal

Ethereal home page
 www.ethereal.com

Data ONTAP packet tracer
 type “pktt list” at your filer’s console

Linux NFS manual page
 man nfs

Linux NFS FAQ and how-to
 http://nfs.sourceforge.net

Linux NFS mailing list
 nfs@list.sourceforge.net

Linux network boot loader information
 http://syslinux.zytor.com

Linux manual page with automounter information
 man autofs

Linux automounter information
 www.spack.org/index.cgi/AutomountHelp?action=show&redirect=LinuxAutomounter

Linux high-availability site
 www.linux-ha.org

Network Time Protocol daemon home pages
 www.cis.udel.edu/~ntp
 www.ntp.org

Network Appliance Inc.

32

TECHNICAL REPORT

8.2) Special network settings
Enlarging the transport socket buffers your client uses for NFS traffic helps reduce resource contention
on the client, reduces performance variance, and improves maximum data and operation throughput. In
Linux kernels after 2.4.20, the following procedure is not necessary, as the client will automatically
choose an optimal socket buffer size.

1. Become root on your client
2. cd into /proc/sys/net/core
3. echo 262143 > rmem_max
4. echo 262143 > wmem_max
5. echo 262143 > rmem_default
6. echo 262143 > wmem_default
7. Remount your NFS file systems on the client

This is especially useful for NFS over UDP and when using Gigabit Ethernet. You should consider
adding this to a system startup script that runs before the system mounts NFS file systems. The size
we recommend is the largest safe socket buffer size we’ve tested. On clients smaller than 16MB, you
should leave the default socket buffer size setting to conserve memory.

Most modern Linux distributions contain a file called /etc/sysctl.conf where you can add changes such
as this so they will be executed after every system reboot. Add these lines to your /etc/sysctl.conf file
on your client systems:

net.core.rmem_max = 262143
net.core.wmem_max = 262143
net.core.rmem_default = 262143
net.core.wmem_default = 262143

All Linux kernels later than 2.0 support large TCP windows (RFC 1323) by default. No modification is
needed to enable large TCP windows. Window scaling is enabled by default.

Some customers have found the following settings to help performance in WAN and high-performance
LAN network environments. Use these settings only after thorough testing in your own environment.

> # Netapp filer:
> nfs.tcp.recvwindowsize 2097152
> nfs.ifc.xmt.high 64
> nfs.ifc.xmt.low 8

> # Linux NFS client:
> net.core.rmem_default=65536
> net.core.wmem_default=65536
> net.core.rmem_max=8388608
> net.core.wmem_max=8388608
> net.ipv4.tcp_rmem = 4096 87380 8388608
> net.ipv4.tcp_wmem = 4096 65536 8388608
> # following is in pages, not bytes
> net.ipv4.tcp_mem = 4096 4096 4096

Usually the following setting is the default for common GbE hardware:

Network Appliance Inc.

33

TECHNICAL REPORT

ifconfig eth <dev> txqueuelen 1000

And

net.core.netdev_max_backlog=3000

Linux 2.6 kernels support advanced TCP algorithms that may help with WAN performance. Enabling
tcp_bic or tcp_westwood can have some beneficial effects for WAN performance and overall fairness of
sharing network bandwidth resources among multiple connections.

net.ipv4.tcp_bic=1
net.ipv4.tcp_westwood=1

Linux 2.4 kernels cache the slow start threshold in a single variable for all connections going to the
same remote host. So, packet loss on one RPC transport socket will affect the slow start threshold on
all sockets connecting to that server. The cached value remains for ten minutes. To flush the cache,
you can use (as root):

sysctl –w net.ipv4.route.flush=1

This might be necessary in case some network conditions caused problems, but have been cleared.
Cached ssthresh values will prevent good performance for ten minutes on new connections made after
the network problems have been cleared up.

If you experience ARP storms, this could be the result of client or filer ARP caches that are too small. A
reasonable workaround is to use routers to reduce the size of your physical networks.

These tuning parameters are documented in the kernel source tree in
Documentation/networking/ip-sysctl.txt.

8.3) Controlling File Read-Ahead in Linux
Read-ahead occurs when Linux predicts that an application may soon require file data it has not
already requested. Such prediction is not always accurate, so tuning read-ahead behavior can have
some benefit. Certain workloads benefit from more aggressive read-ahead, while other workloads
perform better with little or no read-ahead. By default, Linux 2.4 kernels will attempt to read ahead by at
least three pages, and up to 31 pages, when it detects sequential read requests from an application.
Some file systems use their own private read-ahead values, but the NFS client uses the system
defaults.

To control the amount of read-ahead performed by Linux, you can tune the system default read-ahead
parameters using the sysctl command. To see what your system’s current default read-ahead
parameters are, you can try:

sysctl vm.min-readahead vm.max-readahead

The min-readahead parameter sets the least amount of read-ahead the client will attempt, and the
max-readahead parameter sets the most read-ahead the client may attempt, in pages. Linux
determines dynamically how many pages to read ahead based on the sequentiality of your application’s
read requests. Note that these settings affect all reads on all NFS file systems on your client system.

Network Appliance Inc.

34

TECHNICAL REPORT

You can increase read-ahead if you know your workload is mostly sequential data or you are trying to
improve WAN performance.

1. Become root
2. sysctl –w vm.max-readahead=255
3. sysctl –w vm.min-readahead=15

will set your system’s read-ahead minimum and maximum to relatively high values, allowing Linux’s
read-ahead algorithm to read ahead as many as 255 pages. This value takes effect immediately.
Usually the best setting for min-readahead is the number of pages in rsize, minus one. For example, if
your client uses typically rsize=32768 when mounting NFS servers, you should set min-readahead to
7. You can add this to the /etc/sysctl.conf file on your client if it supports this; see the section above for
details.

The 2.6 Linux kernel does not support adjusting read-ahead behavior via a sysctl parameter.

On client systems that support a database workload, try setting the minimum and maximum read-ahead
values to one or zero. This optimizes Linux’s read-ahead algorithm for a random-access workload and
prevents the read-ahead algorithm from polluting the client’s data cache with unneeded data. As
always, test your workload with these new settings before making changes to your production systems.

8.4) How to Enable Trace Messages
Sometimes it is useful to enable trace messages in the NFS or RPC client to see what it does when
handling (or mishandling) an application workload. Normally you should use this only when asked by an
expert for more information about a problem. You can do this by issuing the following commands:

1. Become root on your client
2. sysctl –w sunrpc.nfs_debug=1
3. sysctl –w sunrpc.rpc_debug=1

Trace messages appear in your system log, usually /var/log/messages. To disable these trace
messages, echo a zero into the same files. This can generate an enormous amount of system log
traffic, so it can slow down the client and cause timing-sensitive problems to disappear or change in
behavior. You should use this when you have a simple, narrow test case that reproduces the symptom
you are trying to resolve. To disable debugging, simply echo a zero into the same files.

To help the syslogger keep up with the log traffic, you can disable synchronous logging by editing
/etc/syslog.conf and appending a hyphen in front of /var/log/messages. Restart the syslog
daemon to pick up the updated configuration.

8.5) How to Enable Uncached I/O on RHEL AS 2.1
Red Hat Enterprise Linux Advanced Server 2.1 Update 3 introduces a new feature that is designed to
assist database workloads by disabling data caching in the operating system. This new feature is called
“uncached NFS I/O” and is similar to the NFS O_DIRECT feature found in Enterprise Linux 3.0 and
SUSE’s SLES 8 Service Pack 3. When this feature is enabled, an application’s read and write system
calls are translated directly into NFS read and write operations. The Linux kernel never caches the
results of any read or write, so applications always get exactly what’s on the server.

Uncached I/O affects an entire mount point at once, unlike NFS O_DIRECT, which affects only a single
file at a time. System administrators can combine mount points that are uncached (say, for shared data
files) and mount points that cache data normally (say, for program executables or home directories) on

Network Appliance Inc.

35

TECHNICAL REPORT

the same client. Also unlike NFS O_DIRECT, uncached I/O is compatible with normal I/O. There are no
alignment restrictions, so any application can use uncached I/O without modification.

When uncached I/O is in effect, it changes the semantics of the “noac” mount option. Normally the
“noac” mount option means that attribute caching is disabled. When the uncached I/O feature is in
effect, “noac” is changed to mean that data caching is disabled. When uncached I/O is not in effect,
“noac” mount points behave as before. Uncached I/O is turned off by default.

To enable uncached I/O, follow this procedure:

1. Become root
2. Start your favorite editor on /etc/modules.conf
3. Add this line anywhere: “options nfs nfs_uncached_io=1”

Uncached I/O will take effect after you reboot your client. Only mount points that use the “noac” mount
option will be effected by this change.

For more information on how to use this feature with Oracle9i RAC, see NetApp TR 3189.

© 2004 Network Appliance, Inc. All rights reserved. Specifications subject to change without notice. NetApp, NetCache, and the Network
Appliance logo are registered trademarks and Network Appliance, DataFabric, and The evolution of storage are trademarks of Network
Appliance, Inc., in the U.S. and other countries. Oracle is a registered trademark of Oracle Corporation. All other brands or products are
trademarks or registered trademarks of their respective holders and should be treated as such.

